Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems
نویسندگان
چکیده
Academic Editor: Irena Rachůnková Copyright q 2010 J. Zhang and C. Zhai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Using a fixed point theorem of general α-concave operators, we present in this paper criteria which guarantee the existence and uniqueness of positive solutions for two classes of nonlinear perturbed Neumann boundary value problems for second-order differential equations. The theorems for Neumann boundary value problems obtained are very general.
منابع مشابه
Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملNonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملNon-existence and Uniqueness Results for Boundary Value Problems for Yang-mills Connections
We show uniqueness results for the Dirichlet problem for YangMills connections defined in n-dimensional (n ≥ 4) star-shaped domains with flat boundary values. This result also shows the non-existence result for the Dirichlet problem in dimension 4, since in 4-dimension, there exist countably many connected components of connections with prescribed Dirichlet boundary value. We also show non-exis...
متن کامل